ANTIBODIES AGAINST DEHYDRATION PRODUCTS OF 15-KETO-13,14-DIHYDRO-PROSTAGLANDIN E₂

B. M. PESKAR, B. GÜNTER, Ch. STEFFENS, E. E. KRÖNER⁺ and B. A. PESKAR⁺
Med. Klinik, University of Freiburg i. Br., and ⁺Department of Pharmacology, University of Freiburg i. Br.,
D-7800 Freiburg i. Br., FRG

Received 18 April 1980

1. Introduction

Levels of 15-keto-13,14-dihydro metabolites of prostaglandins (PGs) E_2 and $F_{2\alpha}$ in plasma reflect more accurately PG biosynthesis than levels of the primary PGs [1]. However, so far there are only few reports on the development of radioimmunoassays for the PGE₂ metabolite 15-keto-13,14-dihydro-PGE₂ (KH₂PGE₂) [2-5]. Furthermore, the reliability of these assays seems to be lower than the reliability of radioimmunoassays for the corresponding PGF₂₀ metabolite [5,6]. This is probably a consequence of the chemical instability of KH₂PGE₂, which is easily dehydrated to KH₂PGA₂ [6,7]. KH₂PGA₂ can bind to proteins and, under certain conditions like alkaline pH or in the presence of albumin, rearrange to the stable bicyclic degradation end product 11-deoxy-15-keto-13,14-dihydro-11,16-cyclo-PGE₂ (DKH₂cyclo-PGE₂) [6-8]. We have described the first radioimmunoassay for KH₂PGE₂ [2]. Now we show that antisera obtained from rabbits immunized with a KH₂PGE₂-conjugate contain not only antibodies against KH₂PGE₂, but also against the KH₂PGE₂ dehydration products KH2PGA2 and DKH2-cyclo-PGE₂. The three antibody populations differ in their specificities as well as in their association constants. With [3H]KH₂PGE₂ or the tritiated dehydration products as tracers the same antisera can be used for radioimmunoassays of KH2PGE2, KH2PGA2 and DKH₂-cyclo-PGE₂, the specificity and sensitivity of the assays being dependent on the labelled ligand used. The radioimmunoassays for KH₂PGE₂ and KH₂PGA₂ may be used for the direct determination of these compounds under defined conditions. Thus, the radioimmunoassay for KH₂PGA₂ may be especially useful for the determination of the PGE₂

metabolite, when rapid decomposition of KH₂PGE₂ occurs, but is suspended with the formation of KH₂PGA₂ as, e.g., during incubation of KH₂PGE₂ in the absence of albumin at neutral pH and elevated temperatures [7]. Since in the presence of albumin both KH₂PGE₂ and KH₂PGA₂ are not stable and are further transformed to DKH₂-cyclo-PGE₂ [6,7], the radioimmunoassay for DKH2-cyclo-PGE2 might be used for the determination of the PGE₂ metabolite in plasma after conversion to the stable dehydration end product as proposed [8]. However, as DHK₂cyclo-PGE₂ exists in at least three epimerically distinct forms [7], a specificity problem of the radioimmunoassay could emerge at the epimeric level. So far the epimeric ratio formed under various conditions cannot be controlled [7]. Nevertheless, the anti-DKH2-cyclo-PGE2 antibodies described here may be especially useful for the radioimmunological determination of KH₂PGE₂ after dehydration in biological material, since these antibodies were produced after immunization with a conjugate synthesized originally with KH₂PGE₂ as hapten and may, therefore, specifically recognize the epimer(s) formed from KH₂PGE₂ under quasi-physiological conditions.

2. Materials and methods

KH₂PGE₂, KH₂PGA₂ and DKH₂-cyclo-PGE₂ as well as other PGs and thromboxane B₂ (TXB₂) were a generous gift of Dr J. Pike, Upjohn Co., Kalamazoo, MI. Their purity was checked by thin layer chromatography in the following solvent systems: chloroform/tetrahydrofuran/acetic acid (100:10:5); ethyl acetate/H₂O/isooctane/acetic acid (110:100:50:20, upper phase); and water-saturated diethyl ether. Only

the latter solvent system separated KH₂PGA₂ from DKH₂-cyclo-PGE₂ sufficiently (R_E values 0.61 and 0.67, respectively). DKH2-cyclo-PGE2 was a mixture of at least three epimers (F. A. Fitzpatrick, Upjohn Co., Kalamazoo, personal communication), which could not be separated. [5,6,8,11,14-3H]KH₂PGE₂ (spec. act. 70 Ci/mmol) was obtained from New England Nuclear Co., Dreieichenhain, The labelled ligand for the radioimmunoassay of KH₂PGA₂ was prepared by incubation of 5 μ Ci [3H]KH₂PGE₂ in 0.5 ml 0.1 M Tris-HCl buffer (pH 8.0) at 37°C for 18 h. After acidification to pH 3.5 the material was extracted into 2 × 4 vol. ethyl acetate and purified by thin-layer chromatography. Similarly, the labelled ligand for the radioimmunoassay of DKH2-cyclo- PGE_2 was prepared by incubation of 25 μ Ci [3H]KH₂PGE₂ at 37°C for 18 h in 1 ml human plasma depleted of endogenous PG by charcoal adsorption [9]. The labelled material was extracted and purified as above. The radioactivity co-chromatographing with authentic KH₂PGA₂ or DKH₂-cyclo-PGE₂, respectively, was scraped off and eluted with 5 ml methanol. Possible epimers of the tritiated product co-chromatographing with DKH₂-cyclo-PGE₂ were not separated. The synthesis of an immunogenic KH₂PGE₂-bovine serum albumin conjugate as well as the production and specificity of antisera against KH₂PGE₂ have been described [2]. Binding parameters for antibody populations used under radioimmunoassay conditions were determined according to [10] using the central linear part of Scatchard plots [11]. The plots were corrected for non-specific binding to normal rabbit serum, which was used in the same dilutions as the antisera. Radioimmunoassays were performed as in [9]. Samples were incubated at 4°C overnight and 0.5 ml charcoal suspension (20 mg/ml) was used to separate free and antibody-bound fractions of antigen.

3. Results and discussion

Rabbits immunized with KH₂PGE₂-bovine serum albumin conjugates produced antisera, which not only bound the homologous hapten KH₂PGE₂, but also its degradation products KH2PGA2 and DKH2cyclo-PGE₂. As albumin promotes the formation of DKH₂-cyclo-PGE₂ from KH₂PGE₂ [6,7], part of the hapten might have already been transformed during preparation of the immunogen. Further dehydration could have occurred after injection of the immunogen. The binding parameters of such an antiserum according to [10] for the three haptens are shown in table 1. The binding constants for KH₂PGE₂ and KH₂PGA₂ are clearly lower than the binding constant for the stable degradation end product DKH₂-cyclo-PGE₂. Binding of KH₂PGE₂ and KH₂PGA₂ to the antiserum is not due to partial conversion of these compounds to DKH₂-cyclo-PGE₂ during the radioimmunoassay incubation. Using thin layer chromatography of labelled compounds after the incubation, formation of DKH₂-cyclo-PGE₂ from either KH₂PGE₂ or KH₂PGA₂ was not detected. However, there was some formation of KH2PGA2 from KH2PGE2 (~5-10%) during the incubation under the conditions used (4°C, 18 h). The binding parameters given for KH₂PGE₂ may, therefore, be slightly influenced by the instability of this compound during the incubation.

The specificity of the radioimmunoassays for KH_2PGE_2 , KH_2PGA_2 and DKH_2 -cyclo- PGE_2 using the same antiserum but different tracers is illustrated in table 2. The antibody population used in the radioimmunoassay for KH_2PGE_2 recognizes the homologous hapten and KH_2PGA_2 equally well, while the relative crossreaction of DKH_2 -cyclo- PGE_2 is <0.06%. The crossreaction of the anti- KH_2PGE_2 antisera with other PGS and PG metabolites has been

Table 1
Binding parameters according to [11] of antibody populations against KH₂PGE₂, KH₂PGA₂ and 11-deoxy-15-keto-13,14-dihydro-11,16-cyclo-PGE₂

	Final antiserum dilution used in radioimmunoassay	K_a (1/mol)	A_0 (mol/l)
15-keto-13,14-dihydro-PGE,	1:3000	6.8 × 10 ⁸	6.0 × 10 ⁻¹⁰
15-keto-13,14-dihydro-PGA ₂	1:3000	9.7×10^{8}	4.8×10^{-10}
11-deoxy-15-keto-13,14-			
dihydro-11,16-cyclo-PGE ₂	1:160 000	2.3×10^{10}	0.4×10^{-10}

 A_0 , concentration of antibody sites; K_a , intrinsic association constant

Table 2
Specificities of anti-PGE₂ metabolite antiserum depending on labelled antigen used

Inhibitor (ng)	50% displacement of labelled ligand in radioimmunoassay for			
	KH ₂ PGE ₂	KH ₂ PGA ₂	11-deoxy-15-keto-13,14- dihydro-11,16-cyclo-PGE,	
KH, PGE,	0.6	5.2	65.0	
KH, PGA,	0.6	0.6	55.0	
11-deoxy-15-keto-13,14-				
dihydro-11,16-cyclo-PGE,	>1000	>1000	0.04	

For final antiserum dilutions used with the tracers see table 1

described [2]. In the KH₂PGA₂ radioimmunoassay KH₂PGA₂ is the most potent inhibitor of binding of label to antiserum (table 2). The relative crossreaction of KH₂PGE₂ is considerable (11.5%), while that of DKH₂-cyclo-PGE₂ is < 0.06% (table 2). The crossreaction of PGA2 is 1.4% and that of all other compounds tested (PGE2, PGE1, PGF2a, PGF1a, PGD2, PGD₁, 6-keto-PGF_{1\alpha}, 15-keto-PGE₂, 15-keto-PGF_{2\alpha}, 13,14-dihydro-15-keto-PGF_{2α}, TXB₂ and 13,14dihydro-15-keto-TXB₂) is <0.06%. The radioimmunoassay for DKH₂-cyclo-PGE₂ is highly specific, the relative crossreaction of KH₂PGE₂ and KH₂PGA₂ being only 0.06% and 0.07%, respectively (table 2). The interference of all other PGs and PG metabolites as well as of TXB₂ in this radioimmunoassay is negligible (relative crossreaction <0.01%), Obviously the bicyclic structure of the KH₂PGE₂ degradation product as compared to the typical structure of primary PGs and PG metabolites results in different immunodominant parts of the hapten molecule. In accordance with the higher avidity of the antibodies (table 1) the sensitivity of the radioimmunoassay for DKH₂-cyclo-PGE₂ is considerably higher than that for KH₂PGE₂ and KH₂PGA₂, 40 pg causing 50% inhibition of binding of label to the antiserum (table 2) and the detection limit (10% inhibition of binding of label) being 4 pg.

Our results show, that antibodies can be produced against compounds like KH₂PGE₂ and KH₂PGA₂, which are not completely stable under physiological conditions. However, as expected, the avidity of these antibodies is lower than the avidity of antibodies against the stable degradation product DKH₂-cyclo-PGE₂. The use of stable hapten mimics instead of labile natural compounds for immunization has been suggested to produce antisera of high avidity and specificity [12] and this method might also be suit-

able for the production of anti-KH₂PGE₂ antisera, which could be used for sensitive radioimmunoassays. The relatively low avidity of the antibodies against KH₂PGE₂ and KH₂PGA₂ may prevent their use for radioimmunological determination of low amounts of the haptens in biological material. Thus, while the sensitivity of our radioimmunoassay for KH₂PGE₂ was sufficient to determine the considerable concentrations of the PGE₂ metabolite found in freshly prepared extracts of human gastric juice [13], it was not possible to detect plasma levels of KH₂PGE₂, which are in the low pg/ml range [14].

A radioimmunoassay for KH₂PGA₂ has so far not been described. This assay may be especially useful for the determination of the PGE₂ metabolite under conditions, where rapid dehydration of KH₂PGE₂ to KH₂PGA₂ takes place, but binding to albumin and/or cyclization to DKH₂-cyclo-PGE₂ does not occur as, e.g., during incubation of KH₂PGE₂ in protein-free solutions at neutral pH and elevated temperatures [7]. Similarly, large amounts of KH₂PGA₂ are formed from KH₂PGE₂ during extraction from aqueous solutions into organic solvents at acid pH [13].

A radioimmunoassay for DKH₂-cyclo-PGE₂ was described [8]. It was suggested that PGE₂ metabolite be measured as DKH₂-cyclo-PGE₂ after complete chemical conversion. Certainly, one can expect a greater reliability of assay results from this method, as, contrary to KH₂PGE₂, DKH₂-cyclo-PGE₂ is stable under various experimental conditions. However, DKH₂-cyclo-PGE₂ exists in at least three epimerically distinct forms [7], the ratio of which formed during various conversion procedures cannot yet be controlled [7]. Valid determination of KH₂PGE₂ as DKH₂-cyclo-PGE₂ requires that the anti-DKH₂-cyclo-PGE₂ antibodies used recognize specifically the epimer(s) of the degradation product formed by the

Volume 115, number 1 FEBS LETTERS June 1980

conversion procedure. The anti-DKH₂-cyclo-PGE₂ antibodies described here were raised by immunization with an immunogen synthesized originally with KH₂PGE₂ as hapten [2]. These antibodies are, therefore, most probably directed against the epimer or mixture of epimers of DKH₂-cyclo-PGE₂ formed from KH₂PGE₂ under quasi-physiological conditions. Consequently, the anti-DKH2-cyclo-PGE2 antibodies described here are possibly more suitable for use in radioimmunoassay than antibodies raised by immunization with conjugates of epimeric mixtures of DKH₂-cyclo-PGE₂. Furthermore, the labelled ligand for our radioimmunoassay was also synthesized from [3H]KH₂PGE₂ under quasi-physiological conditions. The possible use of this radioimmunoassay for DKH₂cyclo-PGE₂ for specific determination of KH₂PGE₂ in biological material after conversion to the stable dehydration product is under investigation.

Acknowledgement

This work was supported by the Deutsche Forschungsgemeinschaft.

References

- [1] Samuelsson, B., Granström, E., Gréen, K., Hamberg, M. and Hammarström, S. (1975) Ann. Rev. Biochem. 44, 669-695.
- [2] Peskar, B. A., Holland, A. and Peskar, B. M. (1974) FEBS Lett. 43, 45-48.
- [3] Gordon, D., Myatt, L., Gordon-Wright, A., Hanson, J. and Elder, M. G. (1977) Prostaglandins 13, 399-408.
- [4] Levine, L. (1977) Prostaglandins 14, 1125-1139.
- [5] Mitchell, M. D., Sors, H. and Flint, A. P. F. (1977) Lancet ii, 558.
- [6] Granström, E. (1979) in: Radioimmunoassay of drugs and hormones in cardiovascular medicine (Albertini, A. et al. eds) pp. 229-238, Elsevier/North-Holland, Amsterdam, New York.
- [7] Fitzpatrick, F. A., Aguirre, R., Pike, J. E. and Lincoln, F. H. (1980) Prostaglandins in press.
- [8] Granström, E. and Kindahl, H. (1979) in: 4th Int. Prostaglandin Conf., Washington, abstr. p. 42.
- [9] Peskar, B. M., Holland, A. and Peskar, B. A. (1974) Clin. Chim. Acta 55, 21-27.
- [10] Kahn, D., Andrieu, J. M. and Dray, F. (1974) Immunochemistry 11, 327-332.
- [11] Scatchard, G. (1949) Ann. NY Acad. Sci. 51, 660-672.
- [12] Fitzpatrick, F. A. and Bundy, G. L. (1978) Proc. Natl. Acad. Sci. USA 75, 2689-2693.
- [13] Peskar, B. M., Seyberth, H. W. and Peskar, B. A. (1980) in: Advances in prostaglandin and thromboxane Research (Samuelsson, B. et al. eds) vol. 8, Raven, New York, in press.
- [14] Samuelsson, B. and Gréen, K. (1974) Biochem. Med. 11, 289-303.